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J. Phys. A: Math. Gen. 15 (1982) 3685-3692. Printed in Great Britain 

The Yang-Mills SU(2) equations of motion and conserved 
quantities on space-like infinity 

D Christodoulou: and A Rosenblumf 
+ Max Planck Institute for Astronomy, Munich, West Germany 
i Department of Physics, Temple University, Philadelphia, Pennsylvania, USA 

Received 28 May 1982 

Abstract. Using the results of an approximation method for the Yang-Mills fields, we 
have calculated a conserved quantity corresponding to the charge at space-like infinity 
usinga geometrical construction. The result obtained is what one would expect on physical 
grounds, 

1. Introduction 

Recently, Drechsler and Rosenblum (198 1) proposed an approximation scheme to 
determine the classical equations of motion, including radiation reaction terms, for 
Yang-Mills SU(2) starting from the abelian Lienard-Wiechert-type solution for the 
gauge field produced by a moving point-like non-abelian charge 4. The higher-order 
iterations were expressed in terms of the regularised first-order Lienard-Wiechert 
solution. The dimensional regularisation procedure was introduced by Riesz and 
investigated in detail in Ma (1947), Schieve et a1 (1972) and Rosenblum (1981). It 
was applied to obtain approximate solutions of the nonlinear equations of motion for 
a charged Yang-Mills particle by starting from the known linear solution which 
is properly regularised to assume finite values on the world line of the particle. 
The Lorentz-type equations of motion were derived for the translational motion, 
including radiation reaction as well as the equations of motion for q in the internal 
isospace, the latter following from the covariant current conservation. As shown 
by Clarke and Rosenblum (1982), these types of equations have unique solutions 
for small angle scattering when suitable conditions are imposed in the infinite 
past. 

In the abelian electromagnetic case, it is possible to define a conserved quantity, 
namely the charge at space-like infinity. Christodoulou (1982), using a geometrical 
construction, has given a definition of conserved quantities at space-like infinity. In 
this paper we explore the relationship between the approximation method with its 
resulting equations of motion and the exact definition of the conserved quantities. 
We first summarise the approximation method, and resulting equations of motion for 
Yang-Mills SU(2). We then give an introduction to the theory of conserved quantities 
at space-like infinity for Yang-Mills SU(2). Lastly, for the simple case of linearised 
Yang-Mills with two charges either parallel or antiparallel, the conserved quantities 
are computed explicitly. 
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2. Field equations and laws of motion 

The field equations for the SU(2) gauge theory are given by 

D”F,” = d”F,, - A ”  XF, .  = j v  

FWy = d,A, -a,& -A ,  X A, 

D{R,v}=DKF+, +D,Fu, +D$K, = O .  (3) 

(1) 

with 

(2) 

obeying the identities 

We use the metric qKv = diag(1, -1, -1, -1) in Minkowski space. The coordinates are 
denoted by x ”  = (x’, X I ) ,  with a, = a/ax”. The argument x ”  of the gauge field strengths 
F,,, the potentials A, or the current components j y  are frequently suppressed; x 
denotes the cross product in isospace, i.e. (A” X F ~ , , ) ~  = E,lkAr(F,Y)k with &,lk being the 
Levi-Civita symbol. 

For N classical point-like non-abelian charges the isovector source current is given 
by the expression 

(4 

where zrnj(.) denotes the trajectory of the nth particle as a function of the proper 
times 7, and T ( ~ )  is an isovector space-time four-vector for the n th particle which can 
be shown to have the form 

7 ( n ) ( 7 )  = q ( n , ( T ) u ( n ) ( T ) ,  u ( n ) ( ~ )  = dZ(nj(T)/dT, 

denoting the four-velocity of the n th particle at the proper time T ,  with q( , , , (T )  being 
the SU(2) charge at the proper time T .  As a consequence of the field equations (I), 
the current (4) is covariantly conserved, i.e. 

D”j ,=a”jv-A”xj ,=O.  ( 5 )  

Besides the source current j y  defined by (4) we introduce the symmetric energy- 
momentum tensor of matter distributed in the form of N non-abelian charged particles 
of masses m,  by 

The explicit forms of the quantities T ( , ) ( T )  and Prn”,(7) are determined as a 
consequence of energy and momentum conservation as well as covariant charge 
conservation. 

In addition, we introduce 

Tt;Y, = iq””FuA . F,, -F”“ 9 F“, (7) 
where means inner product in charge space. 

It is easy to show from equations (1) and (2) that the TG obey 

a”Tr6 = -FY” e 1,. (8) 
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We require overall energy and momentum conservation 

d,(T&) + Tt;”,) =o.  (9) 

a,TGj = Fuw * j,. (10) 

The equations (5) and (10) together with the expressions (4) and (6) are now the 
basis for the derivation of the laws of motion for the non-abelian point charges. To 
derive the respective equations we insert (4) and (6) into ( 5 )  and (lo), respectively, 
multiply the first equation by an arbitrary smooth function Six )  and the second by a 
set of arbitrary smooth functions S, (x ) ,  both of compact support, and integrate over 
all space-time. After an integration by parts, we break up pri, and T(,,) into components 
parallel and perpendicular to the world line at the point determined by T. With 

Using equation (8), this can be rewritten in the form 

Using the expressions in equations ( 5 )  and (10) and integrating by parts, we obtain 
the final equation for each n : 

Equations (15) and (16) are exact, being consequences of the conservation laws 
for the non-abelian charge and for the total energy and momentum. However, the 
forms of the fields entering these equations are not known. They have to be determined 
from the nonlinear field equations (1). In the next section, the approximation method 
for the nonlinear field equations is presented. 

3. The approximation method 

We rewrite equation (1) as a second-order nonlinear equation for the potential in the 
form 

OA, - a,a’A, = j y  + 8 (A, x A,) + A ”  x {a,A, - a,A, -A, x A,} (17) 

where 0 = 88, is the d’Alembert operator. We now expand A, formally as 

A, = C (mjAv (18) 

where im,A, is to be computed as a solution of a field equation containing nonlinear 
terms in the potentials up to the order m - 1 as an effective current on the right-hand 
side. For example, the first- and second-order equations are 

m 

m = l :  Qi!Av - a V a * c i p 4 ,  = i Y ,  (19) 
m = 2 :  Q2Av-ava$,A, =aE,A, x(1)Av +2(i!Aw Xa,(i)A,-(i)A” Xav(i,A,. 

(20) 
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Along with the potentials, we introduce the gauge fields 

, m P F v  = c m - - l F F v  +ap,m,Au -8uim)Ag. 

If we require the Lorentz condition dC,A, = 0 we can choose for the solution of 
equation (19) 

A, = ( q u , / c ~ ) , = ~ ,  (21) 

with ~ " ( 7 , )  denoting the retarded point on the world line associated with the field 
point x and with p = ( l/c)[.xp - z (rr)]u, (rr). The Lorentz condition implies q = 0. 
To get a non-trivial result we must go to the next order and relax the lower-order 
restrictions but keeping the lower-order form of the potentials. For the rest of the 
paper we will assume that this is done. 

4. The definition of charge 

In the Yang-Mills theory it is possible to define a conserved quantity which is in some 
respects analogous to the electric charge in the Maxwell theory (Christodoulou 1982). 
In the Yang-Mills theory, however, in contrast to  electromagnetism, this quantity 
may be different from zero even in the absence of sources. This is due to the fact 
that a Yang-Mills field is self interacting, Another difference between the abelian 
and non-abelian theories is that for the latter the conserved quantity can only be 
defined for a class of fields having special asymptotic behaviour at spatial infinity. To 
describe this asymptotic behaviour, we introduce in the exterior of the light cone of 
the origin in Minkowski space-time the space-like proper distance 

( 2 2 )  

and the coordinates x, 6, p on the hyperboloid of unit space-like vectors where x is 
defined by 

2 2 1 / 2  p = ( r  - - t  ) 

t = p sinh x, r = p  coshx (23) 

and 6, cp are the usual angular coordinates on the two-sphere. The Minkowski metric 
is in these coordinates expressed as 

dsL = d p 2 + p 2  dsk (24) 

dsh = -d,yz+cosh2x (d6*+sin2 19 dp2)  

where 

( 2 5 )  

is the metric on the hyperboloid H = R' xS2. In general coordinates { s a :  a = 0, 1 ,2} 
on the hyperboloid we shall write 

(26)  

We consider then the class of Yang-Mills potentials whose components A,, 
A,, Ao, A, in the above coordinate system have the following asymptotic properties: 

A,(p, x, 6, cp) = --4(x, -9,cpO)p-l +O(P-'- ' ) ,  A , ( p ,  X ,  6, p )  =B,(x, 6, cp)+O(p-')), 

Aob,  x, 6, c p )  = Bo(x, 6, cp) + 

dsk = Yab ds" dsb. 

A, (P, x, -9, cp ) = B, (x, 6, cp 1 + O(p - E  1, 
(27) 



Equations of motion and conserved quantities 3689 

where E > O  and the symbol 
there exists a constant C such that f satisfies 

denotes a function of f with the property that 

P A M  c, 
and the partial derivatives o f f  with respect to the Cartesian coordinates { x ~ }  satisfy 

(28) h + k  p*''ladfl s C, . . . , p la,, . . . a,,fi 6 c 
up to some finite order k. 

satisfy the asymptotic condition 
The above asymptotic form of A is invariant under gauge transformations f which 

f ( P , X ,  *,cP)=g(X,.9,cp)+Ob-'). 

Under such gauge transformations the Lie algebra valued function 4 and the Lie 
algebra valued one-form B = B,  dx +Be  d.9 + B ,  dq  transform as 

4 -g-'4g, B, Hg-'B,g +g-'a,g. (29) 

Thus B is a gauge potential and 4 a Higgs field on H. By virtue of the asymptotic 
hypothesis (27), the Yang-Mills equations on Minkowski space-time have a limit for 
p + CO which is the following system of Yang-Mills-Higgs field equations on H :  

a,,sds4 = 0, ay,& = -4 X d s 4 ,  (30) 
where G is the field strength of the potential B, Gab = aaBb - &B, - B, X Bb, and dB 
and denote the gauge covariant exterior derivative and the metric and gauge 
covariant divergence relative to the metric y on H and the connection defined by the 
gauge potential B. 

By equations (30) the current I defined by 

I = ds4 (31) 
is covariantly conserved, 

ayJJ = 0. ( 3 2 )  
Suppose now that the connection defined by B has a continuous group of automorph- 
isms Aut@). Let 4 be a generator of automorphisms of B, namely a Lie algebra 
valued function such that d s 4 = 0 .  Then the current 4 . I  (where - denotes the 
bivariant inner product in the Lie algebra) is covariantly conserved and, being a scalar 
relative to the gauge group, is conserved in the ordinary sense: a,(@ 8 I )  = 0. Therefore 
the integral of this scalar current on any section E = S 2  of the hyperboloid H = R' x S 2  
is the same. P is therefore a conserved quantity, 

Now let us assume that the connection defined by B is flat, that is G = 0. Then there 
is an isomorphism between Aut@) and the gauge group. Hence there is a linear map 
(T between the Lie algebra of the gauge group and the space of generators of 
automorphisms of B. Therefore we can define through (33) a linear function, that is, 
a one-form, Q on the Lie algebra, Q ( e )  =P(cr(e) )  which is conserved. This is 0, the 
Yang-Mills charge. 
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We have shown that we can define the Yang-Mills charge Q as q one-forms on 
the Lie algebra, if the field strength G of the gauge potential B on the hyperboloid 
H vanishes. By equations (301, G = 0 implies 

4 x d& = 0.  (34) 

G=O implies also that we can find a gauge in which B = O .  Equation (34) implies 
that in this gauge 4 takes values in a one-dimensional subalgebra of the Lie algebra 
of SU(2). Thus there is some element eo in the Lie algebra of SU(2) such that 

4 =fee 
where f is an ordinary function on the hyperboloid H. Then equations (30) reduce to 

where 
5$ = 0 

ay = 6 4  

is the d’Alembert operator of the metric y on H. 

5. Calculation of the total charge 

We now consider two point charges q l ,  42 coming in from infinity with impact parameter 
a. The zeroth-order motion in the centre of mass is 

f ( 2 ,  1 = -u7/(1 -L42j1’2, 
Z l 1 )  = U T / ( l  - 

(35) 2 2 3 
Z ( I )  = - a / 2 ,  Z Q J  = a I 2 ,  z:1, = 0, Z ( 2 )  = 0 ,  
Zp1)  = T / ( 1 - U 2 ) 1 ’ 2 ,  Z ( 2 j  0 = T / ( 1 - L 4 2 ) 1 , ‘ 2  

V p Y  (x ir - z ?I J (71 1) (x ” - 2 :I, (71)) = 0 ,  

The retarded proper times r1 and r2 are determined by the equations 

and 

( 3 7 )  p 1 = r l - ( t - u x ’ ) / ( l - U 2 j 1 ’ 2 ,  p 2  = 7 2 -  (t + U X ’ j / ( l -  u y 2 .  
The zeroth-order potential is then given by 

where 41 and 42 are constants. 
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We find that this potential satisfies the asymptotic conditions (27) and the fields 
# and B on the hyperboloid H are given by 

where 

a = sinh ,y - u cos I9 cosh x, 
( x ’  = r cos 6, 

/3 = sinh ,y + U  cos I9 cosh ,y 

x 3  = r sin asin cp .  
2 (41) 

x = r sin 19 cos 9, 

As d B  = 0, the field strength of B is 

4 1 X 4 2 C k Y  
2 1 / 2 .  

G = -  
(a2  + 1 - U 2 y 2 ( p 2  + 1 - U ) 

The current I is given by 

- ( a 2 + 1 - u 2 ) 1 / 2 ( p z + 1 - u  a dp 2 ) w). (43) 

where (el, e 2 ,  e3}  is an orthonormal basis in the Lie algebra, we have q1 X q 2  = 0 and 
expressions (39), (40), (42), (43) reduce to 

4 = e 3 g ,  (45) 

(46) 

(47) 

(48) 

B = e3  df, 

G = 0, 

I = e 3  dg, 

where 

f =  k l  sinh-’(a/(l -u2)”2)+k2s inh-’ (p/ ( l -u2)’ /2) ,  (49) 

Equations (30) are then found to be satisfied and we have a flat connection B. There 
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are three linearly independent solutions ("(cr, '2)(cr, '3 '(cr of the generator of automorph- 
isms equation: 

D Christodoulou and A Rosenblum 

(5  1) 
(cr =e3, 

11) d& =d(cr-B x(cr = O ,  

( 2 ' ~  = sin f e l  + cos fez,  i3'+ =cosfe l - s infez .  

The conserved charge Q is then 

Q = Q'e, (52)  

where 

Q'  = h "'(cr I"  dS, 

that is 

Q3= aag dS,. I Q' Q~ = 0, 

Calculating the integral Q3 for the section ,y = 0, we obtain 

Q3 = 477(kl+ k2) 

and thus 

Q =47Tr(qi+qz). 

(53) 

(54) 

( 5 5 )  

6. Conclusions 

Using the results of an approximation method for the Yang-Mills fields we have 
calculated the conserved quantity at space-like infinity using a geometrical construc- 
tion. The result obtained is what one would expect on physical grounds. 
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